Скачать прайс (от 4 марта 2024)

Риск разрушения наружного остекления по причине термошока

Риск разрушения наружного остекления по причине термошока обусловлен градиентом температур, возникающим из-за неравномерности нагрева остекления солнечным излучением и/или неравномерности теплоотдачи от остекления в окружающую среду.

Градиент температур может возникать между различными частями одного листа стекла в результате его неравномерного нагрева/охлаждения, например, между освещенным и затененным участками остекления

Градиент температур также может возникать между внутренней поверхностью наружного стекла в стеклопакете и его же наружной поверхностью. Существуют две основные причины возникновения такого температурного градиента. Первая причина заключается в равномерном прогреве всей толщины стекла в результате инсоляции, слабой отдачей тепла в межстекольное пространство и усиленной теплоотдачей в окружающую среду. Вторая причина обусловлена наличием поглощающих покрытий на одной из сторон стекла, например, полимерных пленок.

Исходя из практического опыта, факторы, влияющие на риск термошока, можно перечислить приблизительно в следующем порядке убывания их значимости:

1. Коэффициента поглощения солнечной энергии наружного стекла: чем выше коэффициент поглощения солнечной энергии, тем сильнее нагревается стекло и больше вероятность появления термошока.

2. Коэффициент поглощения солнечной энергии на границе стекло - пленка высок. Это приводит к нагреву поверхности стекла и возникновению градиента температур между поверхностями стекла.

3. В стеклопакетах условия теплоотдачи значительно хуже, чем в одинарном остеклении, что способствует возникновению градиента температур между поверхностями стекла

4. Наличия выступов фасада, близко расположенных деревьев и зданий: на затененных участках остекления инсоляция не нагревает стекло, теплоотдача же с различных участков стеклянной панели в воздух одинакова.

5. Наклона элемента остекления: угол падения солнечных лучей для наклонных и горизонтальных элементов остекления ближе к нормали, чем для вертикальных. Поэтому, инсоляция наклонных и горизонтальных элементов больше чем вертикальных. В среднем, инсоляция наклонных и горизонтальных элементов остекления на 250 Вт/м2 больше, чем у вертикальных.

Кроме того, у наклонных и горизонтальных элементов остекления условия теплоотдачи с наружной поверхности примерно на 50% лучше, чем у вертикальных, а с внутренней – приблизительно на 20% хуже.

6. Географической широты: чем южнее расположено здание, тем выше инсоляция. Чем севернее расположено здание, тем ближе угол падения лучей на остекление к нормали.

7. Ширины дистанционной рамки стеклопакета: чем уже рамка, тем слабее конвекция внутри стеклопакета и, соответственно, хуже теплоотдача.

8. Ориентации фасада по сторонам света: наибольшая интенсивность и продолжительность инсоляции наблюдается на южных фасадах зданий.

9. Времени года: инсоляция и температура воздуха зависят от времени года, наиболее неблагоприятное сочетание погодных условий с точки зрения термошока наблюдается ранней весной, в результате высокой инсоляции и низкой температуры воздуха.

10. Климатических характеристик региона: температуры воздуха и скорости ветра: чем ниже температура воздуха и выше скорость ветра, тем выше теплоотдача с наружной поверхности стекла.

11. Суточного перепада температур: остывшие за ночь до одинаковой температуры открытые и затененные зоны остекления нагреваются с разной скоростью, которая зависит, в частности, от суточного перепада температур. Различие в скоростях нагрева различных зон остекления приводит к дополнительному температурному градиенту между ними.

12. Размеров элементов остекления: чем больше размеры остекления, тем выше механические напряжения между нагретыми и холодными участками остекления. Помимо этого, значительное линейное расширение стеклянных панелей в результате нагрева инсоляцией может привести к их разрушению при отсутствии температурных зазоров между элементами остекления и профилем.

13. Конструкции, материала и цвета фасадного или оконного профиля: эти факторы влияют на нагрев самого профиля и, соответственно, на температурные перепады между центром стеклянного элемента фасада и его периферической зоной.

14. Условий вентиляции остекления с внутренней стороны: расположение оконного блока по толщине стены, расстояние между оконным блоком и жалюзи, между структурным остеклением и стеной, подоконное расположение нагревательных приборов: плохие условия вентиляции, а также нагревательные приборы в зоне окна способствуют увеличению температуры внутреннего стекла в оконном блоке (или структурном элементе).

15. Наличия царапин на стекле: царапины, образовавшиеся в ходе хранения, транспортировки и переработки листового стекла, а также при монтаже фасада значительно снижают механическую прочность стекла. Таким образом, разрушение может происходить при меньшем перепаде температур.

16. Толщины стекла: помимо того, что у более толстых стекол выше коэффициент поглощения солнечной энергии, при одинаковом градиенте температур в более толстых стеклах возникают большие механические напряжения.